Detectable Changes in the Level of Cerebral Activation are Related to Auditory Working Memory Load of the Frontal Lobe: A Functional Near Infrared Spectroscopy Study.

G.T. Voelbel1,2, J. Lengenfelder1,2, G. Wylie1,2, R. L. Barbour3,4, Y. Pei3, A. Smith1, & J. DeLuca1,2

1Kessler Medical Rehabilitation Research & Education Center, West Orange, NJ 2University of Medicine and Dentistry of New Jersey 3NIRx Medical Technologies 4SUNY Downstate Medical Center

Introduction

This study examined the concentration of oxygenated hemoglobin (oxyHb) during the N-Back task, a verbal working memory task, with a functional near infrared spectroscopy system (See Figure 1).

The N-Back paradigm used here has 4 levels of working memory cognitive load ("0-back," "1-back," "2-back," and "3-back," see Figure 2).

The relationship between the level of working memory load and hemodynamic response of oxyHb was explored.

Methods

Participants

- 9 Right-Handed Healthy Adults
- Age: 30.7 (11.3) years
- Education: 15.9 (2.7) years
- Free of substance abuse and major psychiatric disorders
- No history of neurological disease or trauma

Behavioral Task

N-Back Task

- Consonant letters were presented every three seconds auditorily in 24 second epochs.
- Four Conditions (0-back, 1-back, 2-back, 3-back)
- Each condition randomly presented 3 times

Apparatus

- Multi-channel continuous wave near infrared imager (NIRx Medical Technologies; see Figure 2)
- 30 source and 30 detector optodes (900 channels)
- Dual wavelength near infrared light (760nm and 830nm)
- Optodes placed on forehead 10% above nasion in a 10 cm by 3 cm rectangle configuration, Figure 3.

Data Preprocessing and Analysis

Preprocessing

- Near Infrared Analysis, Visualization and Imaging (NAVI) software (NIRx Medical Technologies, LLC)
- Low-band pass filter (.15 Hz)
- 15% mean Coefficients of Variation threshold
- Oxy-Hb concentration was modeled with a modified Lambert-Beer analysis for each time point in each voxel of modeled space (Figure 3).
- Data converted to Analyze format

Data Analysis

- AFNI image analysis software
- Time-series deconvolved for each N-back Condition
- N-Back conditions compared across participants with t-tests (random effects analysis).
- Results corrected for multiple comparisons
- \(\alpha = 0.05 \), cluster size = 31 contiguous voxels.
- Plots of oxyHb
- Data baseline corrected over first 7 sec
- Then averaged across subjects
- Plots shown at locations of reliable difference

Results

Figure 4. 1-Back Minus 0-Back Tasks

Area of activation: BA 47, Right Middle Frontal Gyrus

Figure 5. 2-Back Minus 1-Back Conditions

Area of activation: BA 10/46, Right Middle Frontal Gyrus
BA 47, Left Middle Frontal Gyrus.

Figure 6. 3-Back Minus 2-Back Conditions

Area of Activation: BA 46, Right Inferior Frontal Gyrus

Conclusions

- Increased oxy-Hb is associated with greater verbal working memory cognitive demand primarily in right ventro-lateral prefrontal cortex (middle/inferior frontal gyrus).

Funded by the National Institute of Neurological Disorders and Stroke (1F32 NS055548-01 & RA1 NS085007) and the Henry H Kessler Foundation.

Presented at the Cognitive Neuroscience Society Annual Meeting, 2007