dyNA-lyze—an analysis package for time-series NIRS imaging data

Y. Pei1, H. L. Graber1,2, Y. Xu1,2 and R. L. Barbour1,2

1NIRx Medical Technologies LLC / 15 Cherry Lane / Glen Head, NY 11545 / cschmitz@nirx.net, 2Dept. of Pathology / SUNY Downstate Medical Center / 450 Clarkson Ave. Brooklyn, NY 11203

INTRODUCTION

A clinicial example: functional neuroimaging

The operations that fall under the general scope of Dynamics Process tools include time-frequency analysis, signal separation, and rate analysis. For each of these operations, the user specifies a predefined parameter range for each operation, and the application performs the analysis over the entire time series. The results of these operations are then presented graphically and stored in a database for further analysis.

OPTICAL INFRARED

The operations that fall under the general scope of Dynamics Process tools include time-frequency analysis, signal separation, and rate analysis. For each of these operations, the user specifies a predefined parameter range for each operation, and the application performs the analysis over the entire time series. The results of these operations are then presented graphically and stored in a database for further analysis.

POST-PROCESSING

POST-PROCESSING

The operations that fall under the general scope of Dynamics Process tools include time-frequency analysis, signal separation, and rate analysis. For each of these operations, the user specifies a predefined parameter range for each operation, and the application performs the analysis over the entire time series. The results of these operations are then presented graphically and stored in a database for further analysis.

Figure 6. Fluorescent Image Recovery Operations

CONCLUSIONS

The results were supported by the National Institutes of Health (NIH) under Grants R21-HL67387, R21-DK63692 and R41-CA96102 and by the US Army under

REFERENCES

ACKNOWLEDGMENT

This research was supported by the National Institutes of Health under Grants R21-HL67387, R21-DK63692 and R41-CA96102 and by the US Army under Grant W81XWH-03-1-0228.

Figure 5. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 4. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 3. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 2. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 1. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 6. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 5. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 4. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 3. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 2. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 1. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 6. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 5. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 4. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 3. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 2. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.

Figure 1. Example of a case study. The data was processed with an algorithm designed to detect significant changes in the hemoglobin concentration. The algorithm was based on a combination of signal separation, time-frequency analysis, and rate analysis. The results of the algorithm were then presented graphically and stored in a database for further analysis.