Tumor detection by simultaneous bilateral diffuse optical tomography (DOT) breast imaging

Physiological Insight → Clinical Study Design (cont.)

- Three categories of diagnostic metrics (cont.)
 - Group 3: Measures of pressure-induced blood volume and oxygenation shifts
 - Computes from data collected during Validation maneuver
 - Awa re sensitive to venous congestion and release functional imaging in venous
 - In the TBB, relative to the contralateral TFB, one would expect to see:
 - Increased oxygenation and decreased perfusion
 - Increased blood volume change
 - Time-lagged responses

- Essential strategy for image time series analysis: Figure 1
- Differences between metric values, for each subject’s two breasts, are calculated as:
 - Tumor minus non-tumor for training-set cancer subjects
 - Left minus right for training-set non-cancer subjects, and for validation-set subjects
 - Each metric is converted into six candidate diagnostic parameters, by normalizing the inter-breast difference in a variety of ways:
 - Difference divided by larger, smaller, or average value of the two individual-breast values
 - Difference multiplied by larger, smaller, or average of the individual-breast values
 - Assessment of sensitivity (SH), specificity (SP), positive and negative predictive values (PPV, NPV)
 - Univariate: variability-sensitive test for difference between means of CA and non-CA-subgroups of the training set
 - Spots-check with non-parametric Mann-Whitney test, to ensure that small sample sizes do not bias the test

- Multivariate: regression-sensitive (LR)
 - Initial model is a linear combination of all univariate predictors that yield statistically significant differences between the sub-group means
 - Use a LR algorithm to find the optimal coefficients for the model
 - Remove redundant metrics (i.e., eliminate least significant metric from the model and repeat LR computation)
 - Use leave-one-out cross-validation (LOOCV) to determine sensitivity to differences in the test set

Physiological Insight → Clinical Study Design (cont.)

- Three categories of diagnostic metrics (cont.)
 - Group 3: Measures of pressure-induced blood volume and oxygenation shifts
 - Computes from data collected during Validation maneuver
 - Awa re sensitive to venous congestion and release functional imaging in venous
 - In the TBB, relative to the contralateral TFB, one would expect to see:
 - Increased oxygenation and decreased perfusion
 - Increased blood volume change
 - Time-lagged responses

- Essential strategy for image time series analysis: Figure 1
- Differences between metric values, for each subject’s two breasts, are calculated as:
 - Tumor minus non-tumor for training-set cancer subjects
 - Left minus right for training-set non-cancer subjects, and for validation-set subjects
 - Each metric is converted into six candidate diagnostic parameters, by normalizing the inter-breast difference in a variety of ways:
 - Difference divided by larger, smaller, or average value of the two individual-breast values
 - Difference multiplied by larger, smaller, or average of the individual-breast values
 - Assessment of sensitivity (SH), specificity (SP), positive and negative predictive values (PPV, NPV)
 - Univariate: variability-sensitive test for difference between means of CA and non-CA-subgroups of the training set
 - Spots-check with non-parametric Mann-Whitney test, to ensure that small sample sizes do not bias the test

- Multivariate: regression-sensitive (LR)
 - Initial model is a linear combination of all univariate predictors that yield statistically significant differences between the sub-group means
 - Use a LR algorithm to find the optimal coefficients for the model
 - Remove redundant metrics (i.e., eliminate least significant metric from the model and repeat LR computation)
 - Use leave-one-out cross-validation (LOOCV) to determine sensitivity to differences in the test set

Clinical Study Results

- Patient population: 37 volunteers
- 14 with breast cancer and 23 healthy controls
- Groups are matched in terms of age and body-mass index
- Heterogeneous control group: includes healthy subjects and subjects having non-cancer breast pathologies
- Data are processed [4,5] to produce time series of volumetric images for each state parameter: [Box-Cox, Hanning, Hanning, and Hanning Bar]

- Univariate Analysis
 - SH, SP, PPV, NPV (range: minimum, maximum, mean) are summarized in Table 1
 - Range includes all univariate metrics
 - Whether or not they show a statistically significant sub-group mean difference
 - For the metrics that are statistically significant predictors, predictive values range from 57% to 91%
 - Mean predictive values range from 60% to 86%, when each metric Group is considered separately
 - Taking all Metric Groups collectively, mean PPV is 69% and mean NPV is 81%

- Multivariate Analysis
 - SH, SP, PPV, NPV (range: minimum, maximum, mean) are summarized in Table 2
 - Predictive models including Group 3 metrics can consider only 21 subjects
 - Models including only Group 1 and/or 2 metrics include all 37 subjects
 - Composite clinical predictive values can increase markedly, relative to the constituent univariate predictors (UPs)
 - Range is from 82% to 100%
 - Best-case composite having minimum values >95% for each of SH, SP, PPV, and NPV

- Validation Study
 - Compute values UPs, for the subjects in the validation set
 - Combine new UP values with multivariate-predictor coefficients derived from the training-test subjects
 - Compute a probability of CA for each validation-subset (event) subject

Table 1. Diagnostic Measures for Group 1 - 3 Data Minimum – Maximum (Mean)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbOxy</td>
<td>42.9-78.6 (59.8)</td>
<td>56.5-95.7 (82.6)</td>
<td>44.4-88.9 (69.8)</td>
</tr>
<tr>
<td>Hbdeoxy</td>
<td>42.9-78.6 (59.8)</td>
<td>56.5-95.7 (82.6)</td>
<td>44.4-88.9 (69.8)</td>
</tr>
<tr>
<td>HbTotal</td>
<td>42.9-78.6 (59.8)</td>
<td>56.5-95.7 (82.6)</td>
<td>44.4-88.9 (69.8)</td>
</tr>
</tbody>
</table>

Table 2. Summary of Multivariate Analysis Results

<table>
<thead>
<tr>
<th>Model</th>
<th>n</th>
<th>PPV</th>
<th>NPV</th>
<th>Sens</th>
<th>Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>21</td>
<td>70.6%</td>
<td>97.5%</td>
<td>82%</td>
<td>92%</td>
</tr>
<tr>
<td>Group 2</td>
<td>21</td>
<td>70.6%</td>
<td>97.5%</td>
<td>82%</td>
<td>92%</td>
</tr>
<tr>
<td>Group 3</td>
<td>21</td>
<td>70.6%</td>
<td>97.5%</td>
<td>82%</td>
<td>92%</td>
</tr>
<tr>
<td>Group 4</td>
<td>21</td>
<td>70.6%</td>
<td>97.5%</td>
<td>82%</td>
<td>92%</td>
</tr>
</tbody>
</table>

References

Acknowledgments

This research was supported by the National Institutes of Health (NIH) under grants 1R43CA91725-1A1, R21-HL67387, R21-DK63692, and R41-CA96102; by the U.S. Army under grant DAMD17-03-1-0316 by the New York State Department of Health, and by the Susan G. Komen Foundation under grant MD0236202.