Introduction

- Measures of microvascular dynamics of breast tissue:
 - Can distinguish between women with and without breast cancer (CA) with high diagnostic sensitivity and specificity (each >95%; NIH:1-103).
 - An important exploratory factor is that a volume of tissue extending far from the borders of the tumor participates in the abnormal response.
 - Hypothesis: performance of the tumor-diagnosing optical metrics may be related to the impact of tumor-associated phenotypes on the microvasculature of the affected breast.
 - Includes angiogenesis, apoptosis, invasiveness, proliferation, stiffness

Data Analysis

1. Previous analysis (NIH:01-103) of data from a 46-subject (28 with active breast CA/IRS3 breast imaging study yielded:
 - 22 multi-variable metrics that are highly sensitive and specific breast-CA predictors
 - 11 of them have no missing independent-variable values for any subject

2. Linear regression computations:
 - Using the 11 predictors as regressors, and either age or body-mass index (BMI) as the dependent variables
 - Yield statistically significant correlations for both age and body-mass index (BMI) when data for the cancer and non-cancer subgroups are evaluated separately

3. New optical index

4. Hypothesis: cancer-status predictors are influenced by differences between the tumor phenotypes of the subgroups.

Conclusions

1. Predictors derived from diffuse optical tomography time series successfully discriminate among breast-CA and non-CA subjects because they consider dynamic features that are correlates of breast-CA tumor phenotypes.

2. The mathematical correlations observed here suggest the feasibility of developing noninvasive optical techniques to estimate the properties of interest (e.g., tumor grade, Her2 status, etc.)

Acknowledgments:
This research was supported by the National Institutes of Health (NIH) under grants R41CA96102 and R01CA106613, by the U.S. Army under grant DAMD17-03-C-0018, by the New York State Department of Health, and by Susan G. Komen for the Cure under grant IMG0403022.